
MTH 522: Advanced Mathematical Statistics

Applying Different techniques to US Arrests Data

04/23/2023

Issues

In this report, we have utilized different techniques, including two types of clustering

and a principal component analysis, to categorize and label the data without

explicitly telling the model what the data means or labelling it. Clustering involves

grouping data points together into clusters based on their proximity to one another,

with two types of clustering techniques, k-means clustering and hierarchical

clustering, employed in this analysis. The primary difference between these

techniques is that k-means clustering requires the number of clusters to be specified

in advance, while hierarchical clustering is a bottom-up approach that starts with a

cluster around every point and expands the clusters until there is one cluster

surrounding the entire dataset, without requiring the number of clusters to be

predetermined.

Principal component analysis is another important technique that allows for the

representation of data using fewer variables than the original dataset. By reducing

the number of variables, we can represent the data more succinctly, making it easier

to analyze and interpret.

Such techniques enable the computer to find patterns in the data that may not be

immediately apparent to humans, and these patterns can then be used to create a

model based on the data. In the context of the US arrest dataset, we faced the

challenge of finding connections between states and specific crimes, including

Assault, Rape, Murder, and Urban Pop.

Findings

Beginning with the principal component analysis, it was discovered that our PC1, or

principal component 1, concentrated on the relationships between the variables of

murder, rape, and assault and was able to account for 62% of the variation in the

original data by itself. Then there was PC2, which focused almost exclusively on the

Urban Pop variable, accounting for a further 24% of the data; so, by themselves,

these two variables could account for around 86% of the data. Additionally, a

visualization revealed that states like New York and California flow in the direction of

the Rape variable, indicating that rape is prevalent in these states.

Moving on to the clustering, we began by utilizing k-means clustering. Here, we

discovered that around four clusters, with k = 4, looked to cluster this US Arrest data

well because the clusters were separated well and built around various groups of the

data. Four clusters were found to be a good fit for this dataset after testing various k

values and cluster sizes. Hierarchical clustering also confirms this. A cluster size of

four was an acceptable cut off for clustering our data after we constructed our

hierarchical cluster and showed a dendrogram.

Appendix A: Methods

The first step is to import the dataset using the pandas read_csv() function and

assign it to the variable 'arrests_data'. Then the data is standardized using the

StandardScaler() function from the scikit-learn library, which transforms the data so

that each variable has a mean of 0 and a standard deviation of 1. The standardized

data is then assigned to 'arrests_data_scaled'. Next, the PCA object is created and

fitted to the standardized data using the fit_transform() method. This creates a new

set of variables, called principal components (PCs), which are linear combinations of

the original variables. A scatter plot is then created with PC1 on the x-axis and PC2

on the y-axis, using the scatter() method from matplotlib.pyplot library. The scatter

plot shows the scores of each observation (state) on the two principal components.

Arrow plots are added to show the relationship between the original variables and

the principal components. The variables' coefficients for PC1 and PC2 are calculated

using the pca.components_.T method and assigned to 'pcs'. For each variable, an

arrow is drawn on the graph with its x and y values corresponding to its coefficients

on PC1 and PC2. The variable name is added to the arrow using the text() method.

The state names are used as labels for the scatter plot points using the text()

method. The plot's axes are labeled and titled using the set_xlabel(), set_ylabel() and

set_title() methods. Finally, the plot is displayed using the show() method from

matplotlib.pyplot library. The loadings, or coefficients, of each variable for each

component are printed using the pandas DataFrame method and assigned to

'loadings'. The amount of variance explained by each principal component is printed

using the explained_variance_ratio_ attribute of the PCA object. Overall, the code

performs PCA on the USArrests dataset and visualizes the scores of each state on

the first two principal components, as well as the relationship between the original

variables and the principal components. The loadings of each variable on each

principal component are also printed, along with the amount of variance explained by

each component.

We will talk about k-means clustering on the USArrests dataset with 2, 3, and 4

clusters. The algorithm is implemented using scikit-learn's KMeans function with the

n_clusters parameter set to the number of clusters desired. The data is passed to

the function using the arrests_data dataframe. For each cluster number, the code

creates a scatter plot of the data points, with the x-axis representing the Murder

variable and the y-axis representing the Assault variable. Each data point is colored

based on the cluster label assigned by the k-means algorithm. The legend identifies

the colors with the cluster labels. To visually distinguish the clusters, the code adds

a border around each cluster grouping. This is accomplished by calculating the

minimum and maximum values for the Murder and Assault variables within each

cluster and drawing a rectangle around these values using the plt.Rectangle

function.

Next, we will talk about hierarchical clustering on the "arrests_data" dataset using the

complete linkage method. The first step is to create a linkage matrix using the

"linkage" function from the "scipy.cluster.hierarchy" module. The linkage matrix

contains information about the hierarchical clustering structure of the data, and it is

computed using the pairwise distances between observations. In this case, the

"complete" method is used to calculate the distances, which uses the maximum

distance between all pairs of observations in the two clusters being merged. The

resulting linkage matrix is stored in the "hier_cluster" variable. Next, a dendrogram is

plotted using the "dendrogram" function from the same module. The dendrogram is

a tree-like diagram that shows the hierarchical relationships between the

observations. The x-axis shows the observations, and the y-axis represents the

distance between them. The "truncate_mode" parameter is used to cut the tree at a

certain level to make it easier to interpret. Here, the "level" option is used with a "p"

value of 50, which means that the tree will be cut at a distance corresponding to the

50th percentile of all distances. The "leaf_rotation" and "leaf_font_size" parameters

are used to make the labels of the observations easier to read. After the dendrogram

is plotted, the "cut_tree" function is used to cut the tree into four clusters. The

resulting cluster labels are stored in the "clusters" variable. The "cut_tree" function

cuts the tree at a certain level based on the number of clusters specified by the

"n_clusters" parameter.

Appendix B: Results

Fig: Coefficients of each variable

Fig: Total variance for each principal component

Fig: Plot for PCA analysis

k-mean Clusters for k=2,3,4

Fig: Dendrogram

Appendix C: Code

import pandas as pd

import numpy as np

from sklearn.decomposition import PCA

from sklearn.preprocessing import StandardScaler

import matplotlib.pyplot as plt

from scipy.cluster.hierarchy import linkage, dendrogram, cut_tree

from sklearn.cluster import KMeans

from sklearn.cluster import AgglomerativeClustering

Load data
arrests_data = pd.read_csv("USArrests.csv", index_col=0)

arrests_data

Standardize the data
scaler = StandardScaler()

arrests_data_scaled = scaler.fit_transform(arrests_data)

PCA
Create PCA object
pca = PCA()

Fit and transform the data
arrests_data_pca = pca.fit_transform(arrests_data_scaled)

fig, ax = plt.subplots(figsize=(10, 8))

Scatter plot the scores (x and y) onto PCs 1 and 2
ax.scatter(arrests_data_pca[:, 0], arrests_data_pca[:, 1], alpha=0.8)

Create variable coefficients for PC1 and PC2
pcs = pca.components_.T

Use variable coefficients to create variable arrows on the graph
for i, (x, y) in enumerate(zip(pcs[:, 0], pcs[:, 1])):

 ax.arrow(0, 0, x, y, head_width=0.1, head_length=0.1, linewidth=1, color='r')

 ax.text(x + 0.1, y + 0.1, arrests_data.columns[i], color='black', ha='center',

va='center')

Use state names as labels for the scatter plot points
for i, state in enumerate(arrests_data.index):

 ax.text(arrests_data_pca[i, 0], arrests_data_pca[i, 1], state, fontsize=10)

Set labels and title
ax.set_xlabel("PC1")

ax.set_ylabel("PC2")

ax.set_title("PCA plot for USArrests Data")

plt.show()

Print the loadings (coefficients) of each variable for each component
loadings = pd.DataFrame(pcs, columns=["PC1", "PC2", "PC3", "PC4"],

index=arrests_data.columns)

print("Loadings:\n", loadings)

Output the amount of variance explained by each principal component
print("Explained variance by PC1: {:.2%}".format(pca.explained_variance_ratio_[0]))

print("Explained variance by PC2: {:.2%}".format(pca.explained_variance_ratio_[1]))

print("Explained variance by PC3: {:.2%}".format(pca.explained_variance_ratio_[2]))

print("Explained variance by PC4: {:.2%}".format(pca.explained_variance_ratio_[3]))

K Means

for n_cluster in range(2,5):

 kmeans = KMeans(n_clusters=n_cluster, random_state=42).fit(arrests_data)

 # Define colors for the clusters
 colors = {0: 'blue', 1: 'red', 2: 'green', 3: 'black'}

 # Plot the data points colored by their cluster labels
 fig, ax = plt.subplots(figsize=(10,10))

 for i, state in enumerate(arrests_data.index):

 ax.scatter(arrests_data.iloc[i,0], arrests_data.iloc[i,1],

c=colors[kmeans.labels_[i]])

 ax.text(arrests_data.iloc[i, 0], arrests_data.iloc[i, 1], state, fontsize=10)

 # Add a legend
 legend_elements = [plt.Line2D([0], [0], color=color, label=f'Cluster {cluster}') for

cluster, color in colors.items()]

 ax.legend(handles=legend_elements, loc='upper left')

 # Add a border around each cluster grouping
 x_min, x_max = ax.get_xlim()

 y_min, y_max = ax.get_ylim()

 for cluster in set(kmeans.labels_):

 cluster_indices = np.where(kmeans.labels_ == cluster)[0]

 x_cluster_min, x_cluster_max = arrests_data.iloc[cluster_indices, 0].min(),

arrests_data.iloc[cluster_indices, 0].max()

 y_cluster_min, y_cluster_max = arrests_data.iloc[cluster_indices, 1].min(),

arrests_data.iloc[cluster_indices, 1].max()

 rect = plt.Rectangle((x_cluster_min, y_cluster_min), x_cluster_max -

x_cluster_min, y_cluster_max - y_cluster_min, fill=False, edgecolor=colors[cluster],

linewidth=2)

 ax.add_patch(rect)

 ax.set_xlabel("Murder")

 ax.set_ylabel("Assault")

 ax.set_title(f'{n_cluster} Clusters')

 plt.show()

Hierarchical Clustering
hier_cluster = linkage(arrests_data, method="complete")

Plotting dendrogram
plt.figure(figsize=(10, 10))

plt.title("Dendrogram")

plt.xlabel("Observations")

plt.ylabel("Distance")

dendrogram(hier_cluster, labels=arrests_data.index, truncate_mode='level', p=50,

leaf_rotation=90., leaf_font_size=12)

plt.show()

Cutting the dendrogram at k=4 to create 4 clusters
clusters = cut_tree(hier_cluster, n_clusters=4)

Counting the number of observations in each cluster
unique, counts = np.unique(clusters, return_counts=True)

print(dict(zip(unique, counts)))

