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Issues 

In this report, we have utilized different techniques, including two types of clustering 

and a principal component analysis, to categorize and label the data without 

explicitly telling the model what the data means or labelling it. Clustering involves 

grouping data points together into clusters based on their proximity to one another, 

with two types of clustering techniques, k-means clustering and hierarchical 

clustering, employed in this analysis. The primary difference between these 

techniques is that k-means clustering requires the number of clusters to be specified 

in advance, while hierarchical clustering is a bottom-up approach that starts with a 

cluster around every point and expands the clusters until there is one cluster 

surrounding the entire dataset, without requiring the number of clusters to be 

predetermined. 

Principal component analysis is another important technique that allows for the 

representation of data using fewer variables than the original dataset. By reducing 

the number of variables, we can represent the data more succinctly, making it easier 

to analyze and interpret. 

Such techniques enable the computer to find patterns in the data that may not be 

immediately apparent to humans, and these patterns can then be used to create a 

model based on the data. In the context of the US arrest dataset, we faced the 

challenge of finding connections between states and specific crimes, including 

Assault, Rape, Murder, and Urban Pop. 

 

Findings 

Beginning with the principal component analysis, it was discovered that our PC1, or 

principal component 1, concentrated on the relationships between the variables of 

murder, rape, and assault and was able to account for 62% of the variation in the 

original data by itself. Then there was PC2, which focused almost exclusively on the 

Urban Pop variable, accounting for a further 24% of the data; so, by themselves, 

these two variables could account for around 86% of the data. Additionally, a 

visualization revealed that states like New York and California flow in the direction of 

the Rape variable, indicating that rape is prevalent in these states. 

Moving on to the clustering, we began by utilizing k-means clustering. Here, we 

discovered that around four clusters, with k = 4, looked to cluster this US Arrest data 

well because the clusters were separated well and built around various groups of the 

data. Four clusters were found to be a good fit for this dataset after testing various k 

values and cluster sizes. Hierarchical clustering also confirms this. A cluster size of 

four was an acceptable cut off for clustering our data after we constructed our 

hierarchical cluster and showed a dendrogram. 

 

 



Appendix A: Methods 

The first step is to import the dataset using the pandas read_csv() function and 

assign it to the variable 'arrests_data'. Then the data is standardized using the 

StandardScaler() function from the scikit-learn library, which transforms the data so 

that each variable has a mean of 0 and a standard deviation of 1. The standardized 

data is then assigned to 'arrests_data_scaled'. Next, the PCA object is created and 

fitted to the standardized data using the fit_transform() method. This creates a new 

set of variables, called principal components (PCs), which are linear combinations of 

the original variables. A scatter plot is then created with PC1 on the x-axis and PC2 

on the y-axis, using the scatter() method from matplotlib.pyplot library. The scatter 

plot shows the scores of each observation (state) on the two principal components. 

Arrow plots are added to show the relationship between the original variables and 

the principal components. The variables' coefficients for PC1 and PC2 are calculated 

using the pca.components_.T method and assigned to 'pcs'. For each variable, an 

arrow is drawn on the graph with its x and y values corresponding to its coefficients 

on PC1 and PC2. The variable name is added to the arrow using the text() method. 

The state names are used as labels for the scatter plot points using the text() 

method. The plot's axes are labeled and titled using the set_xlabel(), set_ylabel() and 

set_title() methods. Finally, the plot is displayed using the show() method from 

matplotlib.pyplot library. The loadings, or coefficients, of each variable for each 

component are printed using the pandas DataFrame method and assigned to 

'loadings'. The amount of variance explained by each principal component is printed 

using the explained_variance_ratio_ attribute of the PCA object. Overall, the code 

performs PCA on the USArrests dataset and visualizes the scores of each state on 

the first two principal components, as well as the relationship between the original 

variables and the principal components. The loadings of each variable on each 

principal component are also printed, along with the amount of variance explained by 

each component. 

We will talk about k-means clustering on the USArrests dataset with 2, 3, and 4 

clusters. The algorithm is implemented using scikit-learn's KMeans function with the 

n_clusters parameter set to the number of clusters desired. The data is passed to 

the function using the arrests_data dataframe. For each cluster number, the code 

creates a scatter plot of the data points, with the x-axis representing the Murder 

variable and the y-axis representing the Assault variable. Each data point is colored 

based on the cluster label assigned by the k-means algorithm. The legend identifies 

the colors with the cluster labels. To visually distinguish the clusters, the code adds 

a border around each cluster grouping. This is accomplished by calculating the 

minimum and maximum values for the Murder and Assault variables within each 

cluster and drawing a rectangle around these values using the plt.Rectangle 

function. 

Next, we will talk about hierarchical clustering on the "arrests_data" dataset using the 

complete linkage method. The first step is to create a linkage matrix using the 

"linkage" function from the "scipy.cluster.hierarchy" module. The linkage matrix 

contains information about the hierarchical clustering structure of the data, and it is 



computed using the pairwise distances between observations. In this case, the 

"complete" method is used to calculate the distances, which uses the maximum 

distance between all pairs of observations in the two clusters being merged. The 

resulting linkage matrix is stored in the "hier_cluster" variable. Next, a dendrogram is 

plotted using the "dendrogram" function from the same module. The dendrogram is 

a tree-like diagram that shows the hierarchical relationships between the 

observations. The x-axis shows the observations, and the y-axis represents the 

distance between them. The "truncate_mode" parameter is used to cut the tree at a 

certain level to make it easier to interpret. Here, the "level" option is used with a "p" 

value of 50, which means that the tree will be cut at a distance corresponding to the 

50th percentile of all distances. The "leaf_rotation" and "leaf_font_size" parameters 

are used to make the labels of the observations easier to read. After the dendrogram 

is plotted, the "cut_tree" function is used to cut the tree into four clusters. The 

resulting cluster labels are stored in the "clusters" variable. The "cut_tree" function 

cuts the tree at a certain level based on the number of clusters specified by the 

"n_clusters" parameter. 

 

Appendix B: Results 

 

Fig: Coefficients of each variable 

 

Fig: Total variance for each principal component 



 

Fig: Plot for PCA analysis 

 



k-mean Clusters for k=2,3,4 

 

Fig: Dendrogram 

  



Appendix C: Code 

import pandas as pd 

import numpy as np 

from sklearn.decomposition import PCA 

from sklearn.preprocessing import StandardScaler 

import matplotlib.pyplot as plt 

from scipy.cluster.hierarchy import linkage, dendrogram, cut_tree 

from sklearn.cluster import KMeans 

from sklearn.cluster import AgglomerativeClustering 

# Load data 
arrests_data = pd.read_csv("USArrests.csv", index_col=0) 

arrests_data 

 
# Standardize the data 
scaler = StandardScaler() 

arrests_data_scaled = scaler.fit_transform(arrests_data) 

 

# PCA 
# Create PCA object 
pca = PCA() 

# Fit and transform the data 
arrests_data_pca = pca.fit_transform(arrests_data_scaled) 

fig, ax = plt.subplots(figsize=(10, 8)) 

 

# Scatter plot the scores (x and y) onto PCs 1 and 2 
ax.scatter(arrests_data_pca[:, 0], arrests_data_pca[:, 1], alpha=0.8) 

 

# Create variable coefficients for PC1 and PC2 
pcs = pca.components_.T 

 

# Use variable coefficients to create variable arrows on the graph 
for i, (x, y) in enumerate(zip(pcs[:, 0], pcs[:, 1])): 

    ax.arrow(0, 0, x, y, head_width=0.1, head_length=0.1, linewidth=1, color='r') 

    ax.text(x + 0.1, y + 0.1, arrests_data.columns[i], color='black', ha='center', 

va='center') 

 

# Use state names as labels for the scatter plot points 
for i, state in enumerate(arrests_data.index): 

    ax.text(arrests_data_pca[i, 0], arrests_data_pca[i, 1], state, fontsize=10) 

 

# Set labels and title 
ax.set_xlabel("PC1") 

ax.set_ylabel("PC2") 

ax.set_title("PCA plot for USArrests Data") 

plt.show() 



 
# Print the loadings (coefficients) of each variable for each component 
loadings = pd.DataFrame(pcs, columns=["PC1", "PC2", "PC3", "PC4"], 

index=arrests_data.columns) 

print("Loadings:\n", loadings) 

 
# Output the amount of variance explained by each principal component 
print("Explained variance by PC1: {:.2%}".format(pca.explained_variance_ratio_[0])) 

print("Explained variance by PC2: {:.2%}".format(pca.explained_variance_ratio_[1])) 

print("Explained variance by PC3: {:.2%}".format(pca.explained_variance_ratio_[2])) 

print("Explained variance by PC4: {:.2%}".format(pca.explained_variance_ratio_[3])) 

 

# K Means 
 
for n_cluster in range(2,5): 

    kmeans = KMeans(n_clusters=n_cluster, random_state=42).fit(arrests_data) 

    # Define colors for the clusters 
    colors = {0: 'blue', 1: 'red', 2: 'green', 3: 'black'} 

 

    # Plot the data points colored by their cluster labels 
    fig, ax = plt.subplots(figsize=(10,10)) 

    for i, state in enumerate(arrests_data.index): 

        ax.scatter(arrests_data.iloc[i,0], arrests_data.iloc[i,1], 

c=colors[kmeans.labels_[i]]) 

        ax.text(arrests_data.iloc[i, 0], arrests_data.iloc[i, 1], state, fontsize=10) 

    # Add a legend 
    legend_elements = [plt.Line2D([0], [0], color=color, label=f'Cluster {cluster}') for 

cluster, color in colors.items()] 

    ax.legend(handles=legend_elements, loc='upper left') 

 

    # Add a border around each cluster grouping 
    x_min, x_max = ax.get_xlim() 

    y_min, y_max = ax.get_ylim() 

    for cluster in set(kmeans.labels_): 

        cluster_indices = np.where(kmeans.labels_ == cluster)[0] 

        x_cluster_min, x_cluster_max = arrests_data.iloc[cluster_indices, 0].min(), 

arrests_data.iloc[cluster_indices, 0].max() 

        y_cluster_min, y_cluster_max = arrests_data.iloc[cluster_indices, 1].min(), 

arrests_data.iloc[cluster_indices, 1].max() 

        rect = plt.Rectangle((x_cluster_min, y_cluster_min), x_cluster_max - 

x_cluster_min, y_cluster_max - y_cluster_min, fill=False, edgecolor=colors[cluster], 

linewidth=2) 

        ax.add_patch(rect) 

 

    ax.set_xlabel("Murder") 



    ax.set_ylabel("Assault") 

    ax.set_title(f'{n_cluster} Clusters') 

    plt.show() 

 

# Hierarchical Clustering 
hier_cluster = linkage(arrests_data, method="complete") 

 

# Plotting dendrogram 
plt.figure(figsize=(10, 10)) 

plt.title("Dendrogram") 

plt.xlabel("Observations") 

plt.ylabel("Distance") 

dendrogram(hier_cluster, labels=arrests_data.index, truncate_mode='level', p=50, 

leaf_rotation=90., leaf_font_size=12) 

plt.show() 

 

# Cutting the dendrogram at k=4 to create 4 clusters 
clusters = cut_tree(hier_cluster, n_clusters=4) 

 

# Counting the number of observations in each cluster 
unique, counts = np.unique(clusters, return_counts=True) 

print(dict(zip(unique, counts))) 

 

 

 

 

 

 

 

 

 


