MTH 522: Advanced Mathematical Statistics

Applying Different techniques to US Arrests Data
04/23/2023



Issues

In this report, we have utilized different techniques, including two types of clustering
and a principal component analysis, to categorize and label the data without
explicitly telling the model what the data means or labelling it. Clustering involves
grouping data points together into clusters based on their proximity to one another,
with two types of clustering techniques, k-means clustering and hierarchical
clustering, employed in this analysis. The primary difference between these
techniques is that k-means clustering requires the number of clusters to be specified
in advance, while hierarchical clustering is a bottom-up approach that starts with a
cluster around every point and expands the clusters until there is one cluster
surrounding the entire dataset, without requiring the number of clusters to be
predetermined.

Principal component analysis is another important technique that allows for the
representation of data using fewer variables than the original dataset. By reducing
the number of variables, we can represent the data more succinctly, making it easier
to analyze and interpret.

Such techniques enable the computer to find patterns in the data that may not be
immediately apparent to humans, and these patterns can then be used to create a
model based on the data. In the context of the US arrest dataset, we faced the
challenge of finding connections between states and specific crimes, including
Assault, Rape, Murder, and Urban Pop.

Findings

Beginning with the principal component analysis, it was discovered that our PC1, or
principal component 1, concentrated on the relationships between the variables of
murder, rape, and assault and was able to account for 62% of the variation in the
original data by itself. Then there was PC2, which focused almost exclusively on the
Urban Pop variable, accounting for a further 24% of the data; so, by themselves,
these two variables could account for around 86% of the data. Additionally, a
visualization revealed that states like New York and California flow in the direction of
the Rape variable, indicating that rape is prevalent in these states.

Moving on to the clustering, we began by utilizing k-means clustering. Here, we
discovered that around four clusters, with k = 4, looked to cluster this US Arrest data
well because the clusters were separated well and built around various groups of the
data. Four clusters were found to be a good fit for this dataset after testing various k
values and cluster sizes. Hierarchical clustering also confirms this. A cluster size of
four was an acceptable cut off for clustering our data after we constructed our
hierarchical cluster and showed a dendrogram.



Appendix A: Methods

The first step is to import the dataset using the pandas read_csv() function and
assign it to the variable 'arrests_data'. Then the data is standardized using the
StandardScaler() function from the scikit-learn library, which transforms the data so
that each variable has a mean of 0 and a standard deviation of 1. The standardized
data is then assigned to 'arrests_data_scaled'. Next, the PCA object is created and
fitted to the standardized data using the fit_transform() method. This creates a new
set of variables, called principal components (PCs), which are linear combinations of
the original variables. A scatter plot is then created with PC1 on the x-axis and PC2
on the y-axis, using the scatter() method from matplotlib.pyplot library. The scatter
plot shows the scores of each observation (state) on the two principal components.
Arrow plots are added to show the relationship between the original variables and
the principal components. The variables' coefficients for PC1 and PC2 are calculated
using the pca.components_.T method and assigned to 'pcs'. For each variable, an
arrow is drawn on the graph with its x and y values corresponding to its coefficients
on PC1 and PC2. The variable name is added to the arrow using the text() method.
The state names are used as labels for the scatter plot points using the text()
method. The plot's axes are labeled and titled using the set_xlabel(), set_ylabel() and
set_title() methods. Finally, the plot is displayed using the show() method from
matplotlib.pyplot library. The loadings, or coefficients, of each variable for each
component are printed using the pandas DataFrame method and assigned to
'loadings'. The amount of variance explained by each principal component is printed
using the explained_variance_ratio_ attribute of the PCA object. Overall, the code
performs PCA on the USArrests dataset and visualizes the scores of each state on
the first two principal components, as well as the relationship between the original
variables and the principal components. The loadings of each variable on each
principal component are also printed, along with the amount of variance explained by
each component.

We will talk about k-means clustering on the USArrests dataset with 2, 3, and 4
clusters. The algorithm is implemented using scikit-learn's KMeans function with the
n_clusters parameter set to the number of clusters desired. The data is passed to
the function using the arrests_data dataframe. For each cluster number, the code
creates a scatter plot of the data points, with the x-axis representing the Murder
variable and the y-axis representing the Assault variable. Each data point is colored
based on the cluster label assigned by the k-means algorithm. The legend identifies
the colors with the cluster labels. To visually distinguish the clusters, the code adds
a border around each cluster grouping. This is accomplished by calculating the
minimum and maximum values for the Murder and Assault variables within each
cluster and drawing a rectangle around these values using the plt.Rectangle
function.

Next, we will talk about hierarchical clustering on the "arrests_data" dataset using the
complete linkage method. The first step is to create a linkage matrix using the
"linkage" function from the "scipy.cluster.hierarchy" module. The linkage matrix
contains information about the hierarchical clustering structure of the data, and it is



computed using the pairwise distances between observations. In this case, the
"complete"” method is used to calculate the distances, which uses the maximum
distance between all pairs of observations in the two clusters being merged. The
resulting linkage matrix is stored in the "hier_cluster” variable. Next, a dendrogram is
plotted using the "dendrogram"” function from the same module. The dendrogram is
a tree-like diagram that shows the hierarchical relationships between the
observations. The x-axis shows the observations, and the y-axis represents the
distance between them. The "truncate_mode" parameter is used to cut the tree at a
certain level to make it easier to interpret. Here, the "level" option is used with a "p"
value of 50, which means that the tree will be cut at a distance corresponding to the
50th percentile of all distances. The "leaf_rotation" and "leaf_font_size" parameters
are used to make the labels of the observations easier to read. After the dendrogram
is plotted, the "cut_tree" function is used to cut the tree into four clusters. The
resulting cluster labels are stored in the "clusters" variable. The "cut_tree" function
cuts the tree at a certain level based on the number of clusters specified by the
"n_clusters" parameter.

Appendix B: Results

PC1 PC2 PC3 PC4
Murder 0.535899 0.418181 -0.341233 0.649228
Assault 0.583184 0.187986 -0.268148 -0.743407
UrbanPop 0.278191 -0.872806 -0.378016 0.133878
Rape 0.543432 -0.167319 0.817778 0.089024

Fig: Coefficients of each variable

Explained variance by PCl: 62.01%
Explained variance by PC2: 24.74%
Explained variance by PC3: 8.91%
Explained varilance by PC4: 4.34%

Fig: Total variance for each principal component



25

20

15

10

05

0o

-05

w

PCA plot for USArrests Data

@ ississippi
@lorth Carolina
@ outh Carolina
@ermont @Vest Virginia
$xorgia
vkansas @labama aska
‘(emucky
@outh Dakota gonnessegjouisiana
@lorth Dakota Montana e
Jhine i g/aryland
#ano " oy g dew Mexico
@tew Hampshire Fape ‘ - o
a
> d'ebraska grdiana @ichigan
nsas fLxial ars @fissoun
gexas
gennsylvania
Mscongihnesota s dinois
York glevada
‘\hshl ‘:olorado
g-onnecticut
Jersey
hodeddsrpchusaliEW
.@,‘,’;‘,. &alifornia
-3 -2 -1 0 1 2 3
PC1
Fig: Plot for PCA analysis
2 Clusters
3 Clusters
= Cluster 0
— CI::ha:l —— B et
— Clusler2 — Cluster1 debioonles f
= Cluster 3 = Cluster 2
= Cluster 3
dand
gvizona L 00 glaryland
dlew Mexico grizona
galiarnia goulh Carolna lew Meica .
|- galifornia gouih Carofna
@ssissigni jaska
Vel j ¢ ) Qississippi
‘W{E L 250 ‘um*;h el douifiana
pelaware diabama
lawars ;Nahama
p— peorga Genrgia
s p—m
grkansas ey 5 20 L= e
Qlissouri .-% grkanses gennesses
T e hods lsland gfszoun
Greoon ARG P
a #regon g
mﬂmuﬂ homa 150 chusatHahoma o
gaghan neas P‘:ns giagiiah 4hi
i gt Vgihes o
100
ghine #90 Dakmiv st Vg gene  EOUN Dakntshd Vigiik
gfinnesola gfinnescta
mggﬁw . Tyt
il ® : Aaval
25 50 5 100 125 150 7.5 oo 25 50 15 0.0 125 1650 175

Murder

Murder



4 Clusters

=0

—— Cluster 0
—— Cluster 1
—— Cluster 2
—— Cluster 3

$ississippi

giozth Carnling

garyland

gizona

e Maxico

@outh Carafina

galifarnia

gHlaska

gouifiana

A

lawars

golorada

aoes

@ennesses

gkanzas.

@fssouri

fihode Istand

& al .
o S

Jnessy

150

&b

R

#(anlucky

iana
vania

T dronnecticut

fvest virginia

ezl

Gicuth Dakot;

i

@finnasota

k-mean Clusters for k=2,3,4

25 50 75 0.0 12.5 15.0 7.5

oo

Nurder

Dendrogram

i

-

SOUBJE]

100

mﬁmmmmﬁﬁl

a0

a

JUOLLIEA
EJONEQ YHON
EJO¥EQ inog
Uiy

BILIBI, 159
anysdwey may
EMO|
UISUCISIA
EJoSaULIY
IIEMEH
SESUBY
BUEIpL|

ouep)
BUEJUOY
fyamuay
BYSEIqEN
BIUBAASLUE
nanJauuey
Uen

oo

Kasiar man
SJ18SNYoBSSEY
uojfuiysep
ey,
ELLOUE[HD
uohaiy
Bunwofm
PuE|S| 8poyy
sEXa|
opeIo|cD
eifiioe
ELEETIET
SESUBNY
INOSSIY
TE N
ueBiuoy

oA MaN
sloul
ElLuojie]
OOIXE MEN
BUOZLY
pueidieyy
EUJIOJBT) LnoS
iddississy
EYSEN
BUBIEINGT
EBLWECENY
BIEME(3]
EUNIDJET) UMON
epuold

Chservations

Dendrogram

Fig



Appendix C: Code

import pandas as pd

import numpy as np

from sklearn.decomposition import PCA

from sklearn.preprocessing import StandardScaler
import matplotlib.pyplot as plt

from scipy.cluster.hierarchy import linkage, dendrogram, cut_tree
from sklearn.cluster import KMeans

from sklearn.cluster import AgglomerativeClustering

# Load data

arrests_data = pd.read_csv("USArrests.csv", index_col=0)
arrests_data

# Standardize the data
scaler = StandardScaler()
arrests_data_scaled = scaler.fit_transform(arrests_data)

# PCA

# Create PCA object

pca = PCA()

# Fit and transform the data

arrests_data_pca = pca.fit_transform(arrests_data_scaled)
fig, ax = plt.subplots(figsize=(10, 8))

# Scatter plot the scores (x and y) onto PCs 1 and 2
ax.scatter(arrests_data_pcal;, 0], arrests_data_pcal;, 1], alpha=0.8)

# Create variable coefficients for PC1 and PC2
pcs = pca.components_.T

# Use variable coefficients to create variable arrows on the graph
fori, (x, y) in enumerate(zip(pcsl;, 0], pcsl;, 1])):
ax.arrow(0, 0, x, y, head_width=0.1, head_length=0.1, linewidth=1, color="r")
ax.text(x + 0.1,y + 0.1, arrests_data.columns]i], color='black’, ha='center’,
va='center’)

# Use state names as labels for the scatter plot points
for i, state in enumerate(arrests_data.index):
ax.text(arrests_data_pcali, 0], arrests_data_pcali, 1], state, fontsize=10)

# Set labels and title

ax.set_xlabel("PC1")

ax.set_ylabel("PC2")

ax.set_title("PCA plot for USArrests Data")
plt.show()



# Print the loadings (coefficients) of each variable for each component
loadings = pd.DataFrame(pcs, columns=["PC1", "PC2", "PC3", "PC4"],
index=arrests_data.columns)

print("Loadings:\n", loadings)

# Output the amount of variance explained by each principal component

print("Explained variance by PC1: {:.2%}".format(pca.explained_variance_ratio_[0]))
print("Explained variance by PC2: {:.2%}".format(pca.explained_variance_ratio_[1]))
print("Explained variance by PC3: {:.2%}".format(pca.explained_variance_ratio_[2]))
print("Explained variance by PC4: {:..2%}".format(pca.explained_variance_ratio_[3]))

# K Means

for n_cluster in range(2,5):
kmeans = KMeans(n_clusters=n_cluster, random_state=42).fit(arrests_data)
# Define colors for the clusters
colors = {0: 'blue’, 1: 'red’, 2: 'green’, 3: 'black’}

# Plot the data points colored by their cluster labels
fig, ax = plt.subplots(figsize=(10,10))
for i, state in enumerate(arrests_data.index):
ax.scatter(arrests_data.ilocli,0], arrests_data.iloc[i, 1],
c=colors[kmeans.labels_[i]])
ax.text(arrests_data.ilocli, 0], arrests_data.ilocli, 1], state, fontsize=10)
#Add a legend
legend_elements = [plt.Line2D([0], [0], color=color, label=f'Cluster {cluster}') for
cluster, color in colors.items()]
ax.legend(handles=legend_elements, loc="upper left’)

# Add a border around each cluster grouping
X_min, x_max = ax.get_xlim()
y_min, y_max = ax.get_ylim()
for cluster in set(kmeans.labels_):
cluster_indices = np.where(kmeans.labels_ == cluster)[0]
x_cluster_min, x_cluster_max = arrests_data.iloc[cluster_indices, 0].min(),
arrests_data.iloc[cluster_indices, 0].max()
y_cluster_min, y_cluster_max = arrests_data.iloc[cluster_indices, 1].min(),
arrests_data.iloc[cluster_indices, 1].max()
rect = plt.Rectangle((x_cluster_min, y_cluster_min), x_cluster_max -
x_cluster_min, y_cluster_max - y_cluster_min, fill=False, edgecolor=colors|[cluster],
linewidth=2)
ax.add_patch(rect)

ax.set_xlabel("Murder")



ax.set_ylabel("Assault")
ax.set_title(f{n_cluster} Clusters’)
plt.show()

# Hierarchical Clustering
hier_cluster = linkage(arrests_data, method="complete")

# Plotting dendrogram

plt.figure(figsize=(10, 10))

plt.title("Dendrogram”)

plt.xlabel("Observations")

plt.ylabel("Distance")

dendrogram(hier_cluster, labels=arrests_data.index, truncate_mode='"level', p=50,
leaf_rotation=90., leaf_font_size=12)

plt.show()

# Cutting the dendrogram at k=4 to create 4 clusters
clusters = cut_tree(hier_cluster, n_clusters=4)

# Counting the number of observations in each cluster
unique, counts = np.unique(clusters, return_counts=True)
print(dict(zip(unique, counts)))



