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Issues 

This report details the construction of a linear model that can be used to 

predict the birthweight of a baby based on various statistical attributes of the 

mother. The model is constructed using variables such as Gestation, Age, 

Height, Weight, and smoking habits of the mother. The focus of this report is 

to determine the test error of the prediction model. Test error refers to the 

error that arises when the model is provided with data that it has never 

encountered before and is asked to predict the baby's weight. Although 

calculating this error can be challenging and lead to some issues, there are 

three validation methods that can be used to refine the test error estimate. 

 

Findings 

Upon creating a linear model for prediction and testing it through various 

validation methods including a validation set, leave-one-out cross-validation, 

and k-fold cross-validation, we were able to identify several key findings. The 

first finding was that certain variables from the mother were significant to the 

model and had the greatest impact on accurately predicting the baby's 

birthweight. These significant variables included the mother's height, weight, 

and smoking habits. In some cases, gestation also played a role in 

determining birthweight. The prediction accuracy of the model was calculated 

using the validation set, leave-one-out cross validation, and k-fold cross 

validation techniques. The validation set’s MSE was 261.65, indicates model’s 

predictions are inaccurate. 

 

Appendix A: Methods 

The study utilized a dataset consisting of six variables, namely Gestation, Age, 

Height, Weight, Smoke (0 or 1 representing non-smoker or smoker), and 

Birthweight of the child. The primary objective of the study was to predict the 

birthweight of the child based on the statistical features of the mother. Before 

beginning the analysis, an empty row and unrealistic values in the dataset 

were removed, such as numbers like 999, 99, and 9 for Gestation, Age, Height, 

Weight, and Smoke, respectively. The summary statistics of all variables in the 

dataset were analysed. 

 

Three validation methods were considered for the developed model: validation 

set, leave-one-out cross-validation, and k-fold cross-validation. To begin with 

the validation set approach, the dataset was divided into a training set and a 



validation/test set in a 50:50 ratio, and a separate variable for the original 

target (Birthweight) values was kept. Subsequently, a multivariate linear model 

was built on the five variables related to the mother, i.e., Gestation, Age, 

Height, Weight, and Smoke (0 or 1). The significance of each variable in the 

prediction was evaluated by examining the model summary. Finally, the QQ 

plot or quantile plot of the residuals was analysed to determine whether the 

residuals of the model were normally distributed. 

 

Appendix B: Results 

Summary Statistics of the dataset. This summary shows statistics for each of 

the six variables of the dataset. 

 

Below are the summary results from linear model that was built the validation 

set approach.  

 

 

 



 

Quantile plot of the residuals to determine if the residuals follow a normal 

distribution because all the points will lie on the line  

 

Appendix C: Code 

#!/usr/bin/env python 

# coding: utf-8 

 

# In[1]: 

 

 

import pandas as pd 

import os 

import numpy as np 

import statsmodels.api as sm 

from sklearn.model_selection import train_test_split, LeaveOneOut, KFold 

import pylab as py 

import matplotlib.pyplot as plt 

 

data = pd.read_excel(os.path.join(os.getcwd(), 'Babies_weight.xlsx')) 

 

data.columns = ['Gestation', 'Age', 'Height', 'Weight', 'Smoke', 'Birthweight'] 

data.head() 

data = data.dropna() 

 

data = data[data["Gestation"] != 999] 

data = data[data["Age"] != 99] 

data = data[data["Height"] != 99] 



data = data[data["Weight"] != 999] 

data = data[data["Smoke"] != 9] 

data.describe() 

 

# Split the data into predictor variables (X) and outcome variable (y) 

X = data[['Gestation', 'Age', 'Height', 'Weight', 'Smoke']] 

y = data['Birthweight'] 

 

model = sm.OLS(y, X).fit() 

print(model.summary()) 

 

# Use validation set method 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5, random_state=0) 

 

# Fit the model on the training set 

model_vs = sm.OLS(y_train, X_train).fit() 

 

# Predict the outcome variable on the test set 

y_pred_vs = model_vs.predict(X_test) 

 

# Calculate the mean squared error (MSE) on the test set 

mse_vs = np.mean((y_test - y_pred_vs) ** 2) 

print('MSE for validation set method:', mse_vs) 

rmse_vs = np.sqrt(mse_vs) 

print('RMSE for validation set method: ',rmse_vs) 

 

residuals = y_test - y_pred_vs 

sm.qqplot(residuals, line='s') 

plt.title('QQ Plot of Residuals') 

plt.xlabel('Predicted Values') 

plt.ylabel('Residuals') 

plt.show() 

 

# Use LOOCV 

loocv = LeaveOneOut() 

loocv.get_n_splits(X) 

# Initialize empty arrays to store predictions and actual values 

y_pred_loocv = np.zeros(len(y)) 

y_actual_loocv = np.zeros(len(y)) 

 

for train_idx, test_idx in loocv.split(X): 

    X_train, X_test = X.iloc[train_idx], X.iloc[test_idx] 

    y_train, y_test = y.iloc[train_idx], y.iloc[test_idx] 

    model_loocv = sm.OLS(y_train, X_train).fit() 

    y_pred_loocv[test_idx] = model_loocv.predict(X_test) 

    y_actual_loocv[test_idx] = y_test 

 

 

mse_loocv = np.mean((y_actual_loocv - y_pred_loocv) ** 2) 

print('MSE for LOOCV: ', mse_loocv) 



rmse_loocv = np.sqrt(mse_loocv) 

print('RMSE for LOOCV: ', rmse_loocv) 

 

# Use k-fold cross-validation with k=10 

kfold = KFold(n_splits=10) 

 

# Initialize empty array to store MSE for each fold 

mse_kfold = np.zeros(10) 

 

for i, (train_idx, test_idx) in enumerate(kfold.split(X)): 

    X_train, X_test = X.iloc[train_idx], X.iloc[test_idx] 

    y_train, y_test = y.iloc[train_idx], y.iloc[test_idx] 

    model_kfold = sm.OLS(y_train, X_train).fit() 

    y_pred_kfold = model_kfold.predict(X_test) 

    mse_kfold[i] = np.mean((y_test - y_pred_kfold) ** 2) 

 

# Calculate the mean MSE over all folds 

mean_mse_kfold = np.mean(mse_kfold) 

print('Mean MSE for k-fold cross-validation:', mean_mse_kfold) 

rmse_kfold = np.sqrt(mean_mse_kfold) 

print('RMSE for k-fold cross-validation:', rmse_kfold) 

 


