
MTH 522: Advanced Mathematical Statistics

Building and Validating a Linear Model to Predict

Baby Birthweight

04/02/2023

Issues

This report details the construction of a linear model that can be used to

predict the birthweight of a baby based on various statistical attributes of the

mother. The model is constructed using variables such as Gestation, Age,

Height, Weight, and smoking habits of the mother. The focus of this report is

to determine the test error of the prediction model. Test error refers to the

error that arises when the model is provided with data that it has never

encountered before and is asked to predict the baby's weight. Although

calculating this error can be challenging and lead to some issues, there are

three validation methods that can be used to refine the test error estimate.

Findings

Upon creating a linear model for prediction and testing it through various

validation methods including a validation set, leave-one-out cross-validation,

and k-fold cross-validation, we were able to identify several key findings. The

first finding was that certain variables from the mother were significant to the

model and had the greatest impact on accurately predicting the baby's

birthweight. These significant variables included the mother's height, weight,

and smoking habits. In some cases, gestation also played a role in

determining birthweight. The prediction accuracy of the model was calculated

using the validation set, leave-one-out cross validation, and k-fold cross

validation techniques. The validation set’s MSE was 261.65, indicates model’s

predictions are inaccurate.

Appendix A: Methods

The study utilized a dataset consisting of six variables, namely Gestation, Age,

Height, Weight, Smoke (0 or 1 representing non-smoker or smoker), and

Birthweight of the child. The primary objective of the study was to predict the

birthweight of the child based on the statistical features of the mother. Before

beginning the analysis, an empty row and unrealistic values in the dataset

were removed, such as numbers like 999, 99, and 9 for Gestation, Age, Height,

Weight, and Smoke, respectively. The summary statistics of all variables in the

dataset were analysed.

Three validation methods were considered for the developed model: validation

set, leave-one-out cross-validation, and k-fold cross-validation. To begin with

the validation set approach, the dataset was divided into a training set and a

validation/test set in a 50:50 ratio, and a separate variable for the original

target (Birthweight) values was kept. Subsequently, a multivariate linear model

was built on the five variables related to the mother, i.e., Gestation, Age,

Height, Weight, and Smoke (0 or 1). The significance of each variable in the

prediction was evaluated by examining the model summary. Finally, the QQ

plot or quantile plot of the residuals was analysed to determine whether the

residuals of the model were normally distributed.

Appendix B: Results

Summary Statistics of the dataset. This summary shows statistics for each of

the six variables of the dataset.

Below are the summary results from linear model that was built the validation

set approach.

Quantile plot of the residuals to determine if the residuals follow a normal

distribution because all the points will lie on the line

Appendix C: Code

#!/usr/bin/env python

coding: utf-8

In[1]:

import pandas as pd

import os

import numpy as np

import statsmodels.api as sm

from sklearn.model_selection import train_test_split, LeaveOneOut, KFold

import pylab as py

import matplotlib.pyplot as plt

data = pd.read_excel(os.path.join(os.getcwd(), 'Babies_weight.xlsx'))

data.columns = ['Gestation', 'Age', 'Height', 'Weight', 'Smoke', 'Birthweight']

data.head()

data = data.dropna()

data = data[data["Gestation"] != 999]

data = data[data["Age"] != 99]

data = data[data["Height"] != 99]

data = data[data["Weight"] != 999]

data = data[data["Smoke"] != 9]

data.describe()

Split the data into predictor variables (X) and outcome variable (y)

X = data[['Gestation', 'Age', 'Height', 'Weight', 'Smoke']]

y = data['Birthweight']

model = sm.OLS(y, X).fit()

print(model.summary())

Use validation set method

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5, random_state=0)

Fit the model on the training set

model_vs = sm.OLS(y_train, X_train).fit()

Predict the outcome variable on the test set

y_pred_vs = model_vs.predict(X_test)

Calculate the mean squared error (MSE) on the test set

mse_vs = np.mean((y_test - y_pred_vs) ** 2)

print('MSE for validation set method:', mse_vs)

rmse_vs = np.sqrt(mse_vs)

print('RMSE for validation set method: ',rmse_vs)

residuals = y_test - y_pred_vs

sm.qqplot(residuals, line='s')

plt.title('QQ Plot of Residuals')

plt.xlabel('Predicted Values')

plt.ylabel('Residuals')

plt.show()

Use LOOCV

loocv = LeaveOneOut()

loocv.get_n_splits(X)

Initialize empty arrays to store predictions and actual values

y_pred_loocv = np.zeros(len(y))

y_actual_loocv = np.zeros(len(y))

for train_idx, test_idx in loocv.split(X):

 X_train, X_test = X.iloc[train_idx], X.iloc[test_idx]

 y_train, y_test = y.iloc[train_idx], y.iloc[test_idx]

 model_loocv = sm.OLS(y_train, X_train).fit()

 y_pred_loocv[test_idx] = model_loocv.predict(X_test)

 y_actual_loocv[test_idx] = y_test

mse_loocv = np.mean((y_actual_loocv - y_pred_loocv) ** 2)

print('MSE for LOOCV: ', mse_loocv)

rmse_loocv = np.sqrt(mse_loocv)

print('RMSE for LOOCV: ', rmse_loocv)

Use k-fold cross-validation with k=10

kfold = KFold(n_splits=10)

Initialize empty array to store MSE for each fold

mse_kfold = np.zeros(10)

for i, (train_idx, test_idx) in enumerate(kfold.split(X)):

 X_train, X_test = X.iloc[train_idx], X.iloc[test_idx]

 y_train, y_test = y.iloc[train_idx], y.iloc[test_idx]

 model_kfold = sm.OLS(y_train, X_train).fit()

 y_pred_kfold = model_kfold.predict(X_test)

 mse_kfold[i] = np.mean((y_test - y_pred_kfold) ** 2)

Calculate the mean MSE over all folds

mean_mse_kfold = np.mean(mse_kfold)

print('Mean MSE for k-fold cross-validation:', mean_mse_kfold)

rmse_kfold = np.sqrt(mean_mse_kfold)

print('RMSE for k-fold cross-validation:', rmse_kfold)

