MTH 522: Advanced Mathematical Statistics

Building and Validating a Linear Model to Predict
Baby Birthweight

04/02/2023

Issues

This report details the construction of a linear model that can be used to
predict the birthweight of a baby based on various statistical attributes of the
mother. The model is constructed using variables such as Gestation, Age,
Height, Weight, and smoking habits of the mother. The focus of this report is
to determine the test error of the prediction model. Test error refers to the
error that arises when the model is provided with data that it has never
encountered before and is asked to predict the baby's weight. Although
calculating this error can be challenging and lead to some issues, there are
three validation methods that can be used to refine the test error estimate.

Findings

Upon creating a linear model for prediction and testing it through various
validation methods including a validation set, leave-one-out cross-validation,
and k-fold cross-validation, we were able to identify several key findings. The
first finding was that certain variables from the mother were significant to the
model and had the greatest impact on accurately predicting the baby's
birthweight. These significant variables included the mother's height, weight,
and smoking habits. In some cases, gestation also played a role in
determining birthweight. The prediction accuracy of the model was calculated
using the validation set, leave-one-out cross validation, and k-fold cross
validation techniques. The validation set's MSE was 261.65, indicates model’s
predictions are inaccurate.

Appendix A: Methods

The study utilized a dataset consisting of six variables, namely Gestation, Age,
Height, Weight, Smoke (0 or 1 representing non-smoker or smoker), and
Birthweight of the child. The primary objective of the study was to predict the
birthweight of the child based on the statistical features of the mother. Before
beginning the analysis, an empty row and unrealistic values in the dataset
were removed, such as numbers like 999, 99, and 9 for Gestation, Age, Height,
Weight, and Smoke, respectively. The summary statistics of all variables in the
dataset were analysed.

Three validation methods were considered for the developed model: validation
set, leave-one-out cross-validation, and k-fold cross-validation. To begin with
the validation set approach, the dataset was divided into a training set and a

validation/test set in a 50:50 ratio, and a separate variable for the original
target (Birthweight) values was kept. Subsequently, a multivariate linear model
was built on the five variables related to the mother, i.e., Gestation, Age,
Height, Weight, and Smoke (0 or 1). The significance of each variable in the
prediction was evaluated by examining the model summary. Finally, the QQ
plot or quantile plot of the residuals was analysed to determine whether the
residuals of the model were normally distributed.

Appendix B: Results

Summary Statistics of the dataset. This summary shows statistics for each of
the six variables of the dataset.

Gestation Age Height Weight Smoke Birthweight
count 1174.000000 1174.008000 1174.000000 | 1174.000800 1174.0808000 1174.000080
mean 279.101363 27.228279 64.849404 | 128.478705 0.390971 119. 462521
std 16.010305 5.817839 2.526102 20.734282 0.488176 18.328671
min 148.000000 15.000000 53.000000 87.000000 55.000000
25% 272.000000 23.000000 62.000000 | 114.250000 0.000060 108.000000
50% 280.000000 26.000000 64.000000 | 125.000000 0.000000 120.000000
75% 288.000000 31.000000 66.000000 | 139.000000 1.0000060 131.000000
max 353.000000 45.000000 72.000000 | 250.000000 1.0600000 176.000000

Below are the summary results from linear model that was built the validation
set approach.

coef std err t P>|t] [@.0825 ©.975]
Gestation @.3549 0.825 14.043 @.080 @.3a5 0.485
Age -8.e217 0.880 -8.271 @.786 -8.179 0.136
Height 8.2126 0.128 1.656 @.098 -8.839 0.464
Weight 0.a84@ 0.825 3.353 @.081 8.835 0.133
Smoke -8.5229 0.968 -8.8@8 8.080 -18.421 -6.624
Omnibus: 3.471 Durbin-Watson: 2.854
Prob(Omnibus): @.176 Jarque-Bera (JB): 3.835
Skew: ©.034 Prob(JB): 0.147

Kurtosis: 3.272 Cond. No. 650.

3 Plot of Residuals

Residuals

40

-3 -2 -1 a 1 2 3
Pradicted Values

Quantile plot of the residuals to determine if the residuals follow a normal
distribution because all the points will lie on the line

Appendix C: Code

#1/usr/bin/env python
coding: utf-8

#In[1]:

import pandas as pd

import os

import numpy as np

import statsmodels.api as sm

from sklearn.model_selection import train_test_split, LeaveOneOut, KFold
import pylab as py

import matplotlib.pyplot as plt

data = pd.read_excel(os.path.join(os.getcwd(), '‘Babies_weight.xlsx'))

data.columns = ['Gestation’, 'Age’, 'Height', 'Weight', 'Smoke', '‘Birthweight']
data.head()
data = data.dropna()

data = data[data['Gestation"] = 999]
data = data[data["Age"] != 99]
data = data[data["Height"] != 99]

data = data[data["Weight"] != 999]
data = data[data["Smoke"] I= 9]
data.describe()

Split the data into predictor variables (X) and outcome variable (y)
X = data[['Gestation', 'Age’, 'Height', 'Weight', 'Smoke]
y = data['Birthweight]

model = sm.OLS(y, X).fit()
print(model.summary())

Use validation set method
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5, random_state=0)

Fit the model on the training set
model_vs = sm.OLS(y_train, X_train).fit()

Predict the outcome variable on the test set
y_pred_vs = model_vs.predict(X_test)

Calculate the mean squared error (MSE) on the test set
mse_vs = np.mean((y_test - y_pred_vs) ** 2)

print(MSE for validation set method:', mse_vs)

rmse_vs = np.sqrt(mse_vs)

print(RMSE for validation set method: ',rmse_vs)

residuals = y_test - y_pred_vs
sm.qgplot(residuals, line='s")
plt.title('QQ Plot of Residuals’)
plt.xlabel('Predicted Values')
plt.ylabel('Residuals’)
plt.show()

Use LOOCV

loocv = LeaveOneOut()

loocv.get_n_splits(X)

Initialize empty arrays to store predictions and actual values
y_pred_loocv = np.zeros(len(y))

y_actual_loocv = np.zeros(len(y))

for train_idx, test_idx in loocv.split(X):
X_train, X_test = X.iloc[train_idx], X.iloc[test_idx]
y_train, y_test = y.iloc[train_idx], y.iloc[test_idx]
model_loocv = sm.OLS(y_train, X_train).fit()
y_pred_loocv[test_idx] = model_loocv.predict(X_test)
y_actual_loocv[test_idx] = y_test

mse_loocv = np.mean((y_actual_loocv - y_pred_loocv) ** 2)
print(MSE for LOOCV: ', mse_loocv)

rmse_loocv = np.sqrt(mse_loocv)
print(RMSE for LOOCV: ', rmse_loocv)

Use k-fold cross-validation with k=10
kfold = KFold(n_splits=10)

Initialize empty array to store MSE for each fold
mse_kfold = np.zeros(10)

for i, (train_idx, test_idx) in enumerate(kfold.split(X)):
X_train, X_test = X.iloc[train_idx], X.iloc[test_idx]
y_train, y_test = y.iloc[train_idx], y.iloc[test_idx]
model_kfold = sm.OLS(y_train, X_train).fit()
y_pred_kfold = model_kfold.predict(X_test)
mse_kfold[i] = np.mean((y_test - y_pred_kfold) ** 2)

Calculate the mean MSE over all folds

mean_mse_kfold = np.mean(mse_kfold)

print('Mean MSE for k-fold cross-validation:’, mean_mse_kfold)
rmse_kfold = np.sqrt(mean_mse_kfold)

print(RMSE for k-fold cross-validation:', rmse_kfold)

